If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3k^2+4k-3=0
a = 3; b = 4; c = -3;
Δ = b2-4ac
Δ = 42-4·3·(-3)
Δ = 52
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{52}=\sqrt{4*13}=\sqrt{4}*\sqrt{13}=2\sqrt{13}$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-2\sqrt{13}}{2*3}=\frac{-4-2\sqrt{13}}{6} $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+2\sqrt{13}}{2*3}=\frac{-4+2\sqrt{13}}{6} $
| 3x^2+7=7-4x | | 3k^2+k-8=0 | | 2k^2-2k-2=0 | | 6x+(6/x^2)=0 | | 5x+-4=-6 | | 3t+6=5t-14 | | y/10=11/13 | | 11/13=y/10 | | 6(2m-3)=24 | | 6(2m-3=24 | | -18=9f+8f | | 5(x+17)=360 | | –32(–5+3x)=–416 | | -2(3x+2=20 | | 30–(2x+8)=12 | | -2(v+4)=-4v-4 | | 5v+45=-5(v-1) | | 9(2x–5)=27 | | (9x+3)/4=(4x-3)/5 | | x-382=0 | | (30/x+31)+(1/x)=1 | | 9x+3/4=4x-3/5 | | 3=(1+11x) | | -7=5(v+4)+4v | | 6=-3x+6(x-2) | | r2=4r | | 4x/7+3x=7 | | -10=2(y+5)+8y | | (40-2x)(60-2x)=800 | | (40-2x)(60-2x)=0 | | |7-9x|=0 | | (5x+23)°=(7x+13)° |